Autumn Scheme of Learning

Year 1/2

\#MathsEveryoneCan

2019-20
Rose

Notes and Guidance

How to use the mixed-age SOL

In this document, you will find suggestions of how you may structure a progression in learning for a mixed-age class.

Firstly, we have created a yearly overview.

Each term has 12 weeks of learning. We are aware that some terms are longer and shorter than others, so teachers may adapt the overview to fit their term dates.

The overview shows how the content has been matched up over the year to support teachers in teaching similar concepts to both year groups. Where this is not possible, it is clearly indicated on the overview with 2 separate blocks.

For each block of learning, we have grouped the small steps into themes that have similar content. Within these themes, we list the corresponding small steps from one or both year groups. Teachers can then use the single-age schemes to access the guidance on each small step listed within each theme.
The themes are organised into common content (above the line) and year specific content (below the line). Moving from left to right, the arrows on the line suggest the order to teach the themes.

Notes and Guidance

How to use the mixed-age SOL

Here is an example of one of the themes from the Year 1/2 mixed-age guidance.

Subtraction

Year 1 (Aut B2, Spr B1)

- How many left? (1)
- How many left? (2)
- Counting back
- Subtraction - not crossing 10
- Subtraction - crossing 10 (1)
- Subtraction - crossing 10 (2)

In order to create a more coherent journey for mixed-age classes, we have re-ordered some of the single-age steps and combined some blocks of learning e.g. Money is covered within Addition and Subtraction.

The bullet points are the names of the small steps from the single-age SOL. We have referenced where the steps are from at the top of each theme e.g. Aut B2 means Autumn term, Block 2. Teachers will need to access both of the single-age SOLs from our website together with this mixed-age guidance in order to plan their learning.

Year 2 (Aut B2, B3)

- Subtract 1-digit from 2-digits
- Subtract with 2-digits (1)
- Subtract with 2-digits (2)
- Find change - money

$$
-1
$$

Points to consider

- Use the mixed-age schemes to see where similar skills from both year groups can be taught together. Learning can then be differentiated through the questions on the single-age small steps so both year groups are focusing on their year group content.
- When there is year group specific content, consider teaching in split inputs to classes. This will depend on support in class and may need to be done through focus groups .
- On each of the block overview pages, we have described the key learning in each block and have given suggestions as to how the themes could be approached for each year group.
- We are fully aware that every class is different and the logistics of mixed-age classes can be tricky. We hope that our mixed-age SOL can help teachers to start to draw learning together.

Guidance

Common Content

In this section, content from single-age blocks are matched together to show teachers where there are clear links across the year groups.
Teachers may decide to teach the lower year's content to the whole class before moving the higher year on to their age-related expectations.
The lower year group is not expected to cover the higher year group's content as they should focus on their own age-related expectations.

In this section, content that is discrete to one year group is outlined.

Teachers may need to consider a split input with lessons or working with children in

Year 1 content
focus groups to ensure they have full coverage of their year's curriculum.
Guidance is given on each page to support the planning of each block.
Year 2 content

Year Specific

The themes should be taught in order from left to right.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number: Place Value Y1 - Numbers to 20 Y2 - Numbers to 100			Number: Addition and Subtraction Year 1- Numbers within 20 (including recognising money) Year 2- Numbers within 100 (including money)						Number: Year 1: Place Value to 50 and Multiplication Year 2: Multiplication		
号	Number: Year 1: Division \& consolidation Year 2: Division		Year 1: Place Value to 100 Year 2: Statistics			Geometry: Year 1: Shape and Consolidation Year 2: Properties of Shape			Number: Year 1: Fractions and Consolidation Year 2: Fractions			$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{H}{0} \\ & 0 . \end{aligned}$
		Measurement: Time		Year 1: Place Value recap		Measurement: Year 1: Weight and Volume Year 2: Mass, Capacity and Temperature			Year 1: Four Operations recap			응 .0 0.0 0 0 0 0

Year 1/2| Autumn Term | Week 10-12 -Number: Place Value and

Place Value and Multiplication

Common Content

Year Specific

In this block, there is a clear split in content with Year 1 looking at numbers to 50 discretely. Teachers may decide to recap numbers to 100 with Year 2 before moving on to multiplication as a group.

Counting in multiples could be used as starters in lessons as both year groups have very similar content. Having looked at the structure of multiplication, Year 2 can then practise times tables on a daily basis.

Both year groups look at equal groups and arrays and describe them using repeated addition. Year 2 are then introduced to the multiplication symbol.

White
 Block 3 - Number
 Theme 1 - Numbers to 50

Year 1| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Numbers to 50

Notes and Guidance

Children count forwards and backwards within 50 . They use a number track to support where needed, in particular crossing the tens boundaries and with teen numbers.
Children build on previous learning of numbers to 20
They learn about grouping in 10s and their understanding of 1 ten being equal to 10 ones is reinforced.

Mathematical Talk

How can we count a larger number of objects more easily.
What happens when we get to $10 ? 20$? 30 ?
__ones make \qquad ten.

How many groups of 10 can we see in the number \qquad ?

Which practical equipment is best for showing groups of 10 ?

Varied Fluency

\square Use the number track to

- count forwards from 35 to 49
- count back from 46 to 38

35	36	37	38	39	40	41	42	43	44	45	46	47	48	49

Can you count from \qquad to \qquad without a number track?

These images both show the same number of counters.
Which counters are easier to count? Why?

\square How many muffins are there?

Numbers to 50

Reasoning and Problem Solving

Eva is counting from 38 to 24	Eva will not say 39 or 19 because they Will she say the number 39? between 38 Will she say the number 29? Will she say the number 19? and 24 Explain how you know. Chill say 29 show this on a
number track.	

Year 1| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Tens and Ones

Notes and Guidance

Varied Fluency

Children use practical equipment to represent numbers to 50 They continue to build their understanding that ten ones can be grouped into one ten. They need to practice grouping equipment into tens themselves (straws, cubes, lolly sticks, 10 frames) before introducing ready made tens or place value counters.
It is important that children understand how a number is made up of tens and ones, e.g. $34=3$ tens and 4 ones.

Mathematical Talk

How many have we got? How can we make them easier to count?
How many tens are there?
How many ones are there?
I have \qquad tens and \qquad ones. What number does that make? How do we record this number in words?

- Four tens and three ones
- Two tens and five ones

Tens and Ones

Reasoning and Problem Solving

The children are completing the part
whole models.
He has wrote 3
which should be
30 or 3 tens.
Dora and Amir both try to build the
same number.
Can you explain the mistake that has is correct.
been made?
Wixed up with tens
and ones and
shown 4 ones and
2 tens (24).

Represent Numbers to 50

Notes and Guidance

Varied Fluency

Children continue to represent numbers to 50 using a variety of concrete materials.

Children should continue to see the groups of tens and ones in each number to support their understanding of place value.

Mathematical Talk

Which digit represents the tens?
Which digit represents the ones?
What do you notice about the numbers $30,40,50$?
How many tens are there? How many ones?
How do we say/write/represent/partition this number?
What's the same about your representations? What's different?

- 34
- 28
- 40
- 16

Number	Tens and Ones	Ten Frame	Straws	Words
26	2 tens 6 ones			Twenty-six
	$\begin{aligned} & \text { _ tens } \\ & \text { __ones } \end{aligned}$		W	Thirty
	$\begin{aligned} & \text { _tens } \\ & \text { __ones } \end{aligned}$			
	$\begin{aligned} & \text { _ tens } \\ & \text { __ones } \end{aligned}$			Seventeen

\square How many different ways can you represent the following numbers? Here is an example for 25

Year 1| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Represent Numbers to 50

Reasoning and Problem Solving

Sort the representations in to two groups.	Children sort the representations in to those which show 23 and those which show 32
Twenty and	
three	

One More One Less

Notes and Guidance

Varied Fluency

Children find one more and one less than given numbers up to 50. Children build numbers concretely before using number tracks and 1-50 grids. As they have already found one more and one less within 10 and 20, they should be able to use this knowledge with larger numbers. Encourage them to notice that it is the ones column that changes most of the time apart from when the ones number is a nine. If they know that 8 is one more than 7 then they also know that 48 is one more than 47

Mathematical Talk

How many do we have? What number does this represent? What would be the number after/before...?
What is one more/one less than...?
When finding one more and one less, which digit changes? Why? Does this always happen?

Fill in the blanks:

There are \qquad donuts.
\qquad is __
There are \qquad donuts. One less than \qquad is \qquad
\square Build and find one more and one less.

-00000000000000000-000-

Find one more and one less:

One more than \qquad is \qquad One less than \qquad is \qquad
One more than \qquad is \qquad
One less than \qquad is \qquad

One more than \qquad is \qquad One less than \qquad is \qquad
One more than \qquad is \qquad
One less than \qquad is \qquad
One more than \qquad is \qquad
One less than \qquad is \qquad

Year 1| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

One More One Less

Reasoning and Problem Solving

Always, sometimes, never...	Sometimes. One more than 19 is 20				
The tens and ones					
digit has changed..					
One more than 24					
is 25					
Only the ones has					
changed.		$	$	When you find one more than a number, only the ones digit will change.	
:---	:---				
Convince me using some examples.	30				
Use the clues to work out the number. - I have a number with 3 tens. One less than my number makes the tens digit change.					
One more than my number has 1 What is my number?					
Can you make some clues to describe your secret number?					

Compare Objects within 50

Notes and Guidance

Children compare two sets of objects using the language 'more than', 'less than' and 'equal to'. Children also use the inequality symbols to compare the sets of objects.

If children are struggling to understand how to use the inequality symbols a visual may help them, for example,

Mathematical Talk

How could we arrange the objects to help us compare them?
What do <, > and = mean?
How do you know you have more or less?
Can you record your ideas in a different way?

Varied Fluency

Teddy and Eva each have some muffins.
Who has more muffins?
Which picture helps you to compare?

\square Fill in the blanks:

\qquad is more than \qquad
\qquad ___ has more muffins.

Complete each box using $<,>$ or $=$
Say and write the number sentences for each one.

Year 1| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Compare Objects within 50

Reasoning and Problem Solving

Jack and Eva are playing a game.
They each collect a handful of cubes.
They arrange their cubes to see who has
more.
:---
has more but his
cubes are spread
out.

Jack
Eva

Compare Numbers within 50

Notes and Guidance

Building on previous learning of comparing practical objects within 50 , children now compare two numbers within 50 using the inequality symbols.

Children continue to use the language 'more than', 'less than' and 'equal to' alongside the correct symbols to compare numbers.

Mathematical Talk

Which number is more? Which is less?
What could we use to represent the numbers?
What do $<,>$ and $=$ mean?
How do you know you have more or less?
What could you use to help you compare?

Varied Fluency

\square Use the number track to compare the two numbers using words and inequality symbols.

\square Use the 1-50 grid to compare the numbers.
$12 \bigcirc$ nineteen
38

$40+1$$|$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Use a number line or 1-50 grid to compare:

Compare Numbers within 50

Reasoning and Problem Solving

What could Teddy's number be? \quad| Teddy's number |
| :--- |
| lould be 21 or 22 |
| It can't be 20 as |
| this is one more |
| than 19 |

Dora compares the two values.	Dora could change $23=\underline{2}$ tens and 3 ones or $33=3$ tens and 3 ones.
Change one thing in the values so they are equal.	
Pick two dominoes to represent two two-digit numbers. For example, 43	Children could do this with a partner.
	43 is larger than 21 as it has more
Then compare them using $<,>$ or $=$ $43>21 \quad 21<43$ Explain how you know.	tens.

Order Numbers within 50

Notes and Guidance

Varied Fluency

Children order numbers using the language, 'largest', 'smallest', 'more than', 'less than', 'least', 'most' and 'equal to'. They continue to use inequality symbols to order numbers in ascending and descending order.
Children should be able to justify the order of numbers using their place value knowledge. They need to know that they should compare the highest place value column first (tens), then move onto the ones if the tens are equal.

Mathematical Talk

Which group has the most? Which group has the least? How does knowing this help us order the groups from largest to smallest?

\square Order the base 10 from smallest to largest:

Using base 10, build and order from largest to smallest:

- $23,49,19$
- 11,33, 22
- $41,14,42,24$

Can you build the groups using equipment and compare?
Use the four numbers to complete the statement.

Order Numbers within 50

Reasoning and Problem Solving

Spot the Mistake	The wrong inequality symbol has been used. It should be $12<21<33<35$
or	
or you correct it?	
$35>33>21>12$	

Alex has this abacus.	$51>34>33$ $51>34>24$
-1	$\begin{aligned} & 51>34>24 \\ & 51>34>15 \end{aligned}$
	$42>34>33$
	$42>34>24$
She uses 6 discs on each empty	$42>34>15$

abacus.

Her numbers must have some tens and some ones.
Draw on the abacus what her numbers could be.

Can you find more than one answer?

White
 Block 3 - Number
 Theme 2 - Counting in multiples

Count in $2 s$

Notes and Guidance

Children build on their previous knowledge of counting in multiples of 2 and go beyond 20 up to 50

They will apply previous learning of one more and one less to counting forwards and backwards in twos. For example, two more than and two less than. The 1-50 grid can be used to spot and discuss patterns that emerge when counting in 2 s .

Mathematical Talk

How can we count the pairs?
What does it mean to count in pairs?
Can we use tens frames to help us count in $2 s$? Can you see any patterns when you count in $2 s$?

Varied Fluency

How many socks are there?

There are \qquad socks in total.

How many gloves are there?

There are \qquad gloves in total.
Represent the gloves using ten frames.
\square
Continue colouring in 2 s on the grid. What do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

\square Complete the number lines by counting in 2 s .

Coles)

Count in 2s

Reasoning and Problem Solving

Count in 5 s

Notes and Guidance

Children build on previous learning of counting in fives to go beyond 20 and up to 50

The 1-50 grid can be used to spot and discuss patterns that emerge when counting in 5 s .

Mathematical Talk

How can we count the groups of 5 ?
Can you describe the pattern when you count in 5 s?
Will \qquad appear on our number line? Why/why not?

Varied Fluency

\square How many fish are there?

There are \qquad fish in each tank.
There are \qquad tanks.
There are \qquad fish altogether.
How many grapes are there?

There are \qquad grapes in each bunch.
There are \qquad bunches.
There are \qquad grapes altogether.
\square Continue counting in 5s on the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

\square Complete the number lines by counting in 5 s .

Year 1| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Count in 5 s

Reasoning and Problem Solving

Amir is making this flower pattern with
counters.
Annie is wrong
because 43 does
not end in a 5 or a
Odd
Explain your answer.

Count in 10s

Notes and Guidance

Varied Fluency

Children count in groups of tens for the first time. Previously they have counted in 2 s and 5 s .
They use pictures, bead strings and number lines to support their counting.

Counting in 10s on a hundred square will also support children to see the similarities between the numbers when we count in tens.

Mathematical Talk

How many birds/flowers are there in total?
How can we use our number lines to help us count them?
Will \qquad appear on our number line? Why?

What is the same about all the numbers we say when we are counting in tens?

How many birds are there altogether?

There are \qquad birds in each tree.
There are \qquad trees.
There are \qquad birds altogether.
\square How many flowers are there altogether?

There are \qquad flowers in each bunch.
There are \qquad bunches.
There are \qquad flowers altogether.
\square Use a 0-100 bead string to count in tens.
Can we count forwards and backwards in tens? - 0000000000000000000

Can we count in tens on a number track as well? How does this match counting on a bead string?

Count in 10s

Reasoning and Problem Solving

Max wants to buy forty grapes.
Are there enough grapes?

Jemima is counting in 10s on part of a hundred square.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

She starts at 10
Shade in all the numbers Jemima will say.

What is the same about the numbers she says?

What is different about the numbers?

Jemima will say $10,20,30,40$ and
50
All the numbers
have the same ones digit (0)
They all have different tens digit.
The tens digit goes up by 1 for each new number she says.

Counting in Coins

Notes and Guidance

Children combine their knowledge of money with counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s to count money efficiently.

They may draw coins or representations to match a given amount and use previous understanding to compare amounts of money.

Mathematical Talk

- 10 p in 5 p coins.
- 50 p in 5 p coins.
- 50 p in 10 p coins.
- 40 p in 5 p coins.

Can two people have the same amount of money, with a different number of coins?

Is the largest amount of coins always the largest amount of money? Can you prove it?

Is there one way, or more than one way?

Varied Fluency

Using coins children make links to times tables. What do they notice?

\square Use or draw coins to show the given amounts.
\square Use $<,>$ or = to compare the amounts.

Counting in Coins

Reasoning and Problem Solving

Alex has 2 silver coins.	Alex has two 5 pence coins. Teddy has 5 bronze coins. Amir has 1 silver coin.		
They all have the same amount of money. Which coins do they each have? Collect or draw the coins to prove it. pence coins. 2			
Amir has one 10			
pence coin.		\quad	They all have 10 p.
:---			

Year 2| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Notes and Guidance

Children count forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . It is important that children do not always start from zero, however they should start on a multiple of 2 or 5 when counting in 2 s and 5 s but can start from any number when counting in 10s. For example when counting in 2 s they should not start at 3 .
Encourage children to look for patterns as they count.

Varied Fluency

Continue each number sequence.

Mathematical Talk

What do you notice? Are the numbers getting larger or smaller?

Are the numbers getting bigger or smaller each time? By how many?

Can you spot a pattern?
Why is it the odd one out? Can you correct the mistake?

\square Circle the odd one out in each number sequence.

- 2, 4, 6, 8, 9, 10, 12......
- 0,5,10,20,30, 40......
- $35,30,25,20,12,10 \ldots .$.

Count forwards and backwards in jumps of 10 from fifty-seven.

Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Reasoning and Problem Solving

Always, Sometimes, Never

- When counting in 2 s from zero the numbers are even.
- When counting in 5 s from zero the numbers are even.
- When counting in 10 s from zero the numbers are even.

Teddy and Whitney are both counting from zero to twenty.

- Teddy is counting in 2 s .
- Whitney is counting in 5 s .

Will they say any of the same numbers?
What do you notice about your answer?

- Always
- Sometimes
- Always

Yes they will both
say 10 and 20
The numbers that are the same are the tens.

Count in 3s

Notes and Guidance

Children count forwards and backwards in 3s from any multiple of 3

Encourage children to look for patterns as they count and use resources such as a number track, a counting stick and concrete representations.

Mathematical Talk

What do you notice about the numbers?
Are the numbers in the sequence getting larger or smaller?
Can you spot a pattern?
What are you counting up in?

Varied Fluency

What do you notice about the numbers that are circled? Continue the pattern.

Complete the number sequences.

Amir has 15 stickers. He collects 3 more each day.
Complete the number track to show how many he will have in six days.

Count in 3s

Reasoning and Problem Solving

Teddy is counting in $2 s$ and Jack is counting in 3 s .

Teddy	2	4	6	8
Jack	3	6	9	12
+				

Teddy says,

If we add our numbers together as we count we can make a new number pattern.

What pattern do they make?
What happens if both Teddy and Jack count in 5 s and they add them together to make a new pattern?

If Teddy and Jack add their numbers together they will be counting in 5 s .

If Teddy and Jack both count in 5 s their new pattern would be counting in 10s.

Count Money - Pence

Notes and Guidance

This block introduces the $£$ and p symbols for the first time.
Children will count in $1 \mathrm{p}, 2 \mathrm{p}, 5 \mathrm{p}$ and 10 p coins. Children can also use related facts to count in 20 p coins.

Children do not convert between pounds and pence, therefore children will need to recognise the 50 p coin but they will not count up in 50 p coins.

Mathematical Talk

What is different about the coins you have counted?
Is the group with the most coins always the biggest amount? Why?

What do you notice about the totals?
Are silver coins always worth more than copper coins?
What different ways can you count the coins?

Varied Fluency

\square Count the money.

(3) (3)
_ $\mathrm{p}=$ (4) (4) (4) (4) (44)
__p= (
\square Use $<,>$ or $=$ to compare the money.

\square Count the money.
(3)

(3)
(920) $=\ldots \mathrm{P}$ (44) (4) (4) (4) (4) (1) (1) (1) $=$ \qquad p

Which is the quickest way?

Count Money - Pence

Reasoning and Problem Solving

Jack selects four of these coins. He can use the coins more than once. What total could he make? What is the lowest total? What is the greatest total?	Example answers: $20 \mathrm{p}, 10 \mathrm{p}, 10 \mathrm{p}$ and 1 p makes 41 p. $5 \mathrm{p}, 5 \mathrm{p}, 5 \mathrm{p}$ and 5 p makes 20 p. $1 \mathrm{p}, 20 \mathrm{p}, 5 \mathrm{p}$ and 2 p makes 28 p. The lowest total would be 1 p, 1 p, 1 p and 1 p, makes 4 p. The greatest total would be 20 p, $20 \mathrm{p}, 20 \mathrm{p}$ and 20 p makes 80 p .	Draw coins to make the statements correct.	For the first one, any answer showing less than 30 p on the right is correct. E.g. two 10 p coins. For the second one, any answer showing less than 25 p on the left. E.g. three 2 p coins.

Count Money - Pounds

Notes and Guidance

Children will continue counting but this time it will be in pounds, not pence. The $£$ symbol will be introduced.
Children must be aware that both coins and notes are used to represent amounts in pounds.
Children will count in $£ 1, £ 2, £ 5, £ 10$ and $£ 20$ s.
In this year group, children work within 100, therefore they will not count in $£ 50$ s.

Mathematical Talk

Do the notes have a greater value than the coins?
Which is the hardest to count? Which is the easiest? Why?
What do you notice about the amounts?

Varied Fluency

\square Count the money.
\qquad
\square Complete the bar models.

$£ 30$		

\square Match the money to the correct total.

[20

Does it matter which side the equals sign is?
Can you find the total in a different way?

£25	$£ 60$	$£ 10$
Which is the odd one out? Explain why.		

Count Money - Pounds

Reasoning and Problem Solving

Is he correct?
Explain your answer.
No, because three
$£ 2$ coins make $£ 6$
$£ 10$ and $£ 6$ is
equal to $£ 16$
He has mistaken
his $£ 2$ coins for $£ 1$
coins.

Explain the mistake.	$£ 7$ is the mistake. It is an odd number. The 2 times table are all even.
	When counting in £2s, we would say $£ 2, £ 4, £ 6, £ 8, £ 10$

White
 Block 3 - Number
 Theme 3 - Equal groups

Making Equal Groups

Notes and Guidance

Children begin by using stories which link to pictures and concrete manipulatives to explore making equal groups and write statements such as 'there are \qquad groups of \qquad .' They will recognise and explain how they know when they are equal or not. Children see equal groups that are arranged differently so they understand that the groups look different but can still be equal in number.
At this stage children do not explore multiplication formally.

Mathematical Talk

How do I know that the groups are equal? What does equal mean?

How many pencils are there in each pot? How can I complete the sentence to describe the groups?

What's the same and what's different?
Are Josh's groups equal or unequal? How can we make them equal?

Varied Fluency

\square Are the groups equal or unequal? Write a label for each.

\square Complete the sentences

There are \qquad groups of \qquad flowers.
\square Josh is drawing equal groups of 3

Complete his drawing.

Making Equal Groups

Reasoning and Problem Solving

Dora and Rosie are making hay bundles.	Possible answer: Dora has made equal groups because she has 3 Wroups of 3 hay bundles.
Explain how you know.	Rosie equal groups?

Use concrete materials or pictures to complete the questions.

Alex has 4 equal groups.
Show me what Alex's groups could look like.

Whitney has 3 unequal groups. Show me what Whitney's groups could look like.

Children will show 4 groups where there are the same amount in each group for Alex and 3 groups that are unequal for Whitney.

Encourage

children to do this
in more than one way.

Add Equal Groups

Notes and Guidance

Varied Fluency

Children use equal groups to find a total. They focus on counting equal groups of 2,5 and 10 and explore this within 50.

Children could begin by linking this to real life, for example animal legs, wheels, flowers in vases etc.
Stem sentences alongside number sentences can help children link the calculation with the situation. Ensure children have the opportunity to say their sentences aloud.

Mathematical Talk

How many apples are there in each bag?
Do all of the bags have an equal number of apples?
How many equal groups can you see?
How can we represent this with counters/cubes/on a number line/in a number sentence etc?

What other equipment could you use to represent your pattern? What's the same? What's different?

Which is more, 3 groups of 10 or 4 groups of 5? Prove why.
\square How many wheels altogether?

How many fingers altogether?

$$
5+5+5=
$$

\square How many apples are there? Complete the sentences.

$5+5+5+5=$ \qquad
There are \qquad apples.
There are \qquad groups of \qquad apples which is equal to \qquad
How many fish are there?
Complete the sentences.

Can you show this using ten frames?
\qquad $+$ \qquad
\qquad $=$
There are \qquad fish.

Add Equal Groups

Reasoning and Problem Solving

Eva and Whitney are making equal

groups of bread rolls. | Possible answer: |
| :--- |
| I agree with both. |

Rosie and Eva have equal groups of either 2, 5 or 10

Each of their totals is less than 40

Rosie has 5 equal groups.
Eva has 3 equal groups.
Eva's total is more than Rosie's total.

What could they be counting in?
Rosie: $2+2+2+$
$2+2=10$
Eva: $10+10+10=$
30

Use equipment to help you.

Recognise Equal Groups

Notes and Guidance

Children describe equal groups using stem sentences to support them. It is important that children know which groups are equal and unequal, and why they are equal or unequal. The addition and multiplication symbols are not used within this small step but use of the language of addition and multiplication will support them in understanding repeated addition and multiplication. The examples included refer to the times tables facts that Year 2 children need to know.

Mathematical Talk

Varied Fluency

Complete the stem sentences.

There are \qquad equal groups with \qquad in each group.
\square Complete the sentences.

What does the 2 represent? What does the 3 represent?
What does the 5 represent? What does the 2 represent?
There are \qquad equal groups with \qquad in each group.
There are \qquad baguettes altogether.

Describe the equal groups.
I have __ equal groups, with __ in each group. Which image am I describing?

Why are these groups equal/unequal?

What is the same and what is different in each group?

Recognise Equal Groups

Reasoning and Problem Solving

Create your own picture to go in each column.

Spot the mistake.

Alex says, "There are 10 equal groups with 2 in each group. There are ten 2 s ."

Hearts and dots in unequal groups.

Stars and squares
in equal groups.

There are 2 equal groups with 10 in each group

There are two 10s.

Make Equal Groups

Notes and Guidance

Children should be able to make equal groups to demonstrate their understanding of the word 'equal'.

With the examples provided to the children, it is important that they are exposed to numerals and words, as well as multiple representations.

Mathematical Talk

How else could you represent these in equal groups?
How many ways can you represent this?
How have you grouped your items?

Varied Fluency

The Base 10 shows six equal groups with ten in each group. There are six tens.

IIIII

How else can you represent these as equal groups?
How many ways can you represent 'four equal groups with three in each group'?

What else do we need to show 'five $3 s$ '?

How else can we show five equal groups with 3 in each group? Compare your answer with a partner.

Make Equal Groups

Reasoning and Problem Solving

Has Eva shown the equal groups
correctly?
Draw or use cubes to show what Eva
should have done.
or make 3 towers
wou make the groups equal? in each
ither.
Various answers
e.g. move one star
from right to left
box. Any answer
that makes them
equal.

| Match the equal groups. | | Sweets, squares,
 two 3s. |
| :--- | :--- | :--- | :--- |
| | Two 10s | Ss. |

Add Equal Groups

Notes and Guidance

Children begin to connect equal groups to repeated addition.
At this point children have added 3 one digit numbers together, therefore they can add up to 3 equal groups when each group is any one digit number.

If there are more than 3 equal groups, the examples must be limited to $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ and 3 s .

Mathematical Talk

What do the two 3 s represent?
Why are we using the addition symbol?
How else can we show the equal groups?
What is the total?

Varied Fluency

Complete:

There are \qquad equal groups with \qquad in each group.
There are___ 3 s .
$-\quad+$ \qquad $=6$
\square Complete:

There are \qquad equal groups with \qquad in each group.
There are three \qquad s.
\qquad
\qquad $+$ \qquad $=12$
\square Complete the table.

Year 2| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Add Equal Groups

Reasoning and Problem Solving

True or False?	This is true because they are both equal to 10 but the groups look different.
Draw an image or use cubes to help you explain your answer.	To the left of the 'equal to' sign are 2 equal groups of 5, and to the right of the 'equal to' sign are 5 equal groups of 2.

Which one does not belong?
Who 5s
What do we need to change to make
them all represent the same?
would have to take
away one five.

The Multiplication Symbol

Notes and Guidance

Children are introduced to the multiplication symbol for the first time. They should link repeated addition and multiplication together, using stem sentences to support their understanding.
They should also be able to interpret mathematical stories and create their own involving multiplication.
The use of concrete resources and pictorial representations is still vital for understanding.

Mathematical Talk

What does the 3 represent? What does the 6 represent?
There are \qquad equal groups with \qquad in each group. There are three \qquad .
\square Complete:

Three 2s	Draw It	Addition	Multiplication
There are 3 equal groups with 2 in each group.			

What does 'lots of' mean?
Does $18=3 \times 6$ mean the same?
How is $6+6+6$ the same as 3×6 ? How is it different?

Varied Fluency

Complete the sentences to describe the equal groups.

\qquad $=18$
omplete:

Addition	Multiplication	Story
$10+10+10$		
	6×5	

The Multiplication Symbol

Reasoning and Problem Solving

$3+3+3=3 \times 3$	He is correct because $\begin{aligned} & 3+3+3=9 \\ & \text { and } 3 \times 3=9 \end{aligned}$
Is Mo correct? Explain why. Draw an image to help you.	
Use $<,>$ or $=$ to make the statements correct.	$\begin{aligned} & 3 \times 5<5+5+ \\ & 5+5 \end{aligned}$
$3 \times 5 \bigcirc 5+5+5+5$	$2 \times 2=2+2$
$2 \times 2 \bigcirc 2+2$	$10 \times 2>5+5+$
$10 \times 2 \bigcirc 5+5+5$	

Think of a multiplication to complete:	Any two numbers which multiply together to give an answer of less than 18
$6+6+6>\ldots \times$	$6+6=2 \times 6$ $2+2+2+2+2+2$ $=6 \times 2$
The total is 12, what could the addition and multiplication be?	$3+3+3+3=4 \times 3$ $4+4+4=3 \times 4$
	$12=1 \times 12$ $1+1+1+1+1+1+$ $1+1+1+1+1=12$ $\times 1$

Multiplication from Pictures

Notes and Guidance

Children will use the multiplication symbol and work out the total from pictures.

They should also be able to interpret a multiplication word problem by drawing images to help them solve it.

Coins could be used within this small step too.

Mathematical Talk

What does the 4 represent?
What does the 3 represent?
What does the 12 represent?
Can you think of your own story for $3 \times 4=12$?

Varied Fluency

Complete:

\square Complete:

Complete the table.

Picture	Multiplication	Sentence
	$4 \times 10=40$	4 lots of 10 is equal to 40
	$35=7 \times 5$	
		6 lots of 3 is equal to 18

Multiplication from Pictures

Reasoning and Problem Solving

White
 Block 3 - Number
 Theme 4 - Arrays

Make Arrays

Notes and Guidance

Children begin to make arrays by making equal groups and building them up in columns or rows.

They use a range of concrete and pictorial representations alongside sentence stems to support their understanding.

Children also explore arrays built incorrectly and recognise the importance of columns and rows.

Mathematical Talk

How many equal groups do I have? How many in each group? Can I represent my apples with counters?

What is the difference between columns and rows?
How many counters in each row? How many counters in each column?

How can I record my array with a number sentence?

Varied Fluency

\square Build an array with counters to represent the apples. Complete the sentences.

There are \qquad apples in each row.
There are \qquad rows.
\qquad $+$ \qquad $+$ \qquad = \qquad

\qquad
\qquad
\qquad apples altogether.

Complete the table.

Array	Description - columns	Description - rows	Totals
\because	5 columns	2 rows	$2+2+2+2+2=10$
2 cookies in each column	5 cookies in each row	$5+5=10$	

Make Arrays

Reasoning and Problem Solving

Amir and Whitney are making arrays. Who has made a mistake? Explain why.	Possible answer: Whitney has made a mistake because her array is not in columns. There are an unequal amount of squares in each row.
Teddy and Alex are writing number sentences to describe the array. Who do you agree with? Explain why.	Possible answer: They are both right. Teddy has counted the columns. Alex has counted the rows.

Eva begins to make an array with 40 counters. She has finished her first row and her first column. Complete her array.	Possible answer: Array showing 10 $+10+10+10=$ 40		
	Or		
	$4+4+4+4+4+$		
$4+4+4+4+4=$			
40		\quad	4
:---			
Write two different number sentences to			
describe the finished array.			

Year 1| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

Making Doubles

Notes and Guidance

Varied Fluency

Children explore doubling with numbers up to 20 Reinforce understanding that 'double' is two groups of a number or an amount. Children show and explain what doubling means using concrete and pictorial representations.
They record doubling using the sentence, 'Double \qquad is \qquad and use repeated addition to represent doubles in the abstract. They look at representations to decide whether that shows doubling or not.

Mathematical Talk

Can you sort these representations in to doubles and not doubles? How do you know they've been doubled?

What comes next in my table, why?
How can we show the double differently?
If double 2 is 4 , what is double 20 ?
What is the largest double we can roll on a normal dice?

Making Doubles

Reasoning and Problem Solving

Complete the table by doubling each number.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

What patterns do you notice?

Possible answer:

1	2
2	4
3	6
4	8
5	10
6	12
7	14
8	16
9	18
10	20

The doubles increase by 2 each time.
The doubles are all even.
The doubles end
in $2,4,6,8$ or 0

Use Arrays

Notes and Guidance

Children explore arrays to see the commutativity of multiplication facts e.g. $5 \times 2=2 \times 5$

The use of the array could be used to help children calculate multiplication statements.

The multiplication symbol and language of 'lots of' should be used interchangeably.

Mathematical Talk

Varied Fluency

\square On the image, find 2×5 and 5×2

Can you represent this array using another object?
\square Complete the number sentences to describe the arrays.

\qquad
Where are the 2 lots of 3 ?
Where are the 3 lots of 2 ?
What do you notice?
What can we use to represent the eggs?
Can you draw an image?

\square Draw an array to show:
$4 \times 5=5 \times 4$
3 lots of $10=10$ lots of 3

Use Arrays

Reasoning and Problem Solving

With 12 cubes, how many different arrays can you create?	
Once you have created your array complete: \qquad \times \qquad $=$ \qquad \times \qquad	$\begin{aligned} & 1 \times 12=12 \times 1 \\ & 2 \times 6=6 \times 2 \\ & 3 \times 4=4 \times 3 \end{aligned}$

Find different ways to solve six lots of three.

Part of this array is hidden.

The total is less than 16
What could the array be?
4×2
5×2
6×2
7×2

Count in 3 s

3 lots of 3 add 3
lots of 3
5×3 add 1×3
etc.
保

White
 Block 3 - Number
 Theme 5 - Times tables

The 2 Times-Table

Notes and Guidance

Children should be comfortable with the concept of multiplication so they can apply this to multiplication tables.

Images, as well as number tracks, should be used to encourage children to count in twos.

Resources such as cubes and number pieces are important for children to explore equal groups within the 2 times-table.

Mathematical Talk

Varied Fluency

Count in 2 s to calculate how many eyes there are.

There are \qquad eyes in total.
\qquad \times \qquad $=$ \qquad
\square Complete the number track.

2	4		8		12
14	16	18			24

If 16 p is made using 2 p coins, how many coins would there be?

	2	4	6	8	

How many 2 s go into 16 ?
How can the images of the 5 bicycles help you to solve the problems?

How many wheels are there on five bicycles?

If there are 14 wheels, how many bicycles are there?

The 2 Times-Table

Reasoning and Problem Solving

Fill in the blanks. $\begin{gathered} 3 \times \ldots=6 \\ Z_{2} \times 2=20 \\ =8 \times 2 \end{gathered}$	$\begin{aligned} & 2 \\ & 10 \\ & 16 \end{aligned}$
Tommy says that $10 \times 2=22$ Is he correct? Explain how you know.	No Tommy is wrong because 10 $\times 2=20$ Children could draw an array or a picture to explain their answer.

Eva says,	Yes, because 2 is even, and the 2 times-table is going up in 2s. When you add two even numbers the answer is always aven.

Year 2| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

The 5 Times-Table

Notes and Guidance

Varied Fluency

Children can already count in 5 s from any given number. They will also have developed understanding of the 2 timestable.

This small step is focused on the 5 times table and it is important to include the use of zero. Children should see the $=$ sign at both ends of the calculation to understand that it means 'equals to'.

How many petals altogether?

Write the calculation.
\square There are 35 fingers.
How many hands?

Mathematical Talk

\qquad

$$
\times 5=35
$$

If there are 30 petals, how many flowers? Can you count in 5 s to 30 ? How many 5 s go into 30 ?

How many 5 s go into 35 ?
What does each symbol mean?

$10 \times 5$$5 \times 5$

The 5 Times-Table

Reasoning and Problem Solving

Is Mo correct?	Mo is incorrect because some of the multiples of the five times- table are even, e.g. $10,20,30$
Explain your answer.	Every number in the
Tubes of tennis balls come in packs of 2 and 5	Whitney could have: 4 packs of 5 and 1 pack of 2, 11 packs of 2 and
Whitney has 22 tubes of balls.	packs of 5, 2 packs of 5 and 6 packs of 2
Have? many of each pack could she	How many ways can you do it?

Tommy and Rosie have both drawn bar models to show 7×5

What's the same and what is different about their bar models?

Draw your own bar model to represent 4×5

The total shown is the same.
Tommy's bar
shows seven lots of 5 whereas
Rosie's bar show five lots of 7

Children can
choose either way
to represent 4×5

Year 2| Autumn Term | Week 10-12 -Number: Place Value and Multiplication

The 10 Times-Table

Notes and Guidance

Children have counted in 10s from any given whole number. This small step is focused on the 10 times-table and it is important to include the use of zero.

Children should see the $=$ sign at both ends of the calculation to understand what it means.

Mathematical Talk

Varied Fluency

How many crayons are there altogether?

\qquad $\times 10=$ \qquad
Altogether there are 30 bottles, how many walls are there?

What if there were 10 packs of crayons?
Think of a multiplication fact for 10 s to go in each box.

If there are 50 crayons altogether, how many packets are there?
How do you know?
How many tens go into 30 ? Can you count in 10 s to 30 ?
What does greater than mean? What does less than mean?

The 10 Times-Table

Reasoning and Problem Solving

On sports day, Jack runs 10 metres, 7
times.

\[\)| Which of these calculations do not |
| :--- |
| describe this word problem? |
| $10+7$ |
| $7+7+7+7+7+7+7+7+7+7$ |
| because he has |
| run 10 metres, 7 |
| times, not 10 |

\]

metres then 7
metres.

Some Base 10 is hidden.	It could be
	$6 \times 10=60$
The total is less than 100	$7 \times 10=70$
What could the calculation be?	$8 \times 10=80$
	$9 \times 10=90$

It can't be 10×10 because 100 is not less than 100, it is equal to 100 .

